CS188 Midterm Cheat Sheet
simonxie2004.github.io

Lecl: Introduction
Lec2: Uninformed Search

1. Reflex Agents V.S. Planning Agents:
1. Reflex Agents: Consider how the world IS
2. Planning Agents: Consider how the world WOULD BE
2. Properties of Agents
1. Completeness: Guaranteed to find a solution if one exists.
2. Optimality: Guaranteed tofind the least cost path.
3. Definition of Search Problem:
“State Space’, "Successor Function’, Start State’ & "Goal Test™
4. Definition of State Space: World State & Search State
5. State Space Graph: Nodes = states, Arcs = successors (action results)
6.Tree Search
1. Main Idea: Expand out potential nodes; Maintain a fringe of partial plans
under consideration; Expand less nodes.
2. Key notions: Expansion, Expansion Strategy, Fringe
3. Common tree search patterns
(Suppose b = branching factor, m = tree depth.)
Nodes in search tree? ¥i",4' = O(b™)
(For BFS, suppose s = depth of shallowest solution)
(For Uniform Cost Search, suppose solution costs C*, min(arc_cost) = eps
4. Special Idea: Iterative Deepening
Run DFS(depth_limit=1), DFS(depth_limit=2), ...
5. Example Problem: Pancake flipping; Cost: Number of pancakes flipped
7. Graph Search
1. Idea: never expand a state twice
2. Method: record set of expanded states where elements = (state, cost).
If a node popped from queue is NOT visited, visit it.
If a node popped from queue is visited, check its cost.
If the cost if lower, expand it. Else skip it.

Strategy Fringe Time Memory Completeness Optimality
True (i o
oFs LFO Stack o) opm) =V Faise
True (i
BFS FIFO Queue o) ofr) True
cost=1)
ucs ocfe 0BT True True

Lec3: Informed Search

1. Definition of heuristic:
Function that estimates how close a state is to a goal; Problem specific!
2. Example heuristics: (Relaxed-problem heuristic)
3. Pancake flipping: heuristic = the number of largest pancake that s still
out of place
4. Dot-Eating Pacman: heuristic = the sum of all weights in a MST (of dots
& current coordinate)
5. Classic 8 Puzzle: heuristic = number of tiles misplaced
6. Easy 8 Puzzle (allow tile to be piled intermediately): heuristic = total
Manhattan distance
3. Remark: Can't use actual cost as heuristic, since have to solve that first!
4. Comparison of algorithms:
1. Greedy Search: expand closest node (to goal);
Orders by forward cost h(n); suboptimal
2. UCS: expand closest node (to start state);
Orders by backward cost g(n); suboptimal
3. A* Search: orders by sum f(n) = g(n) + h(n)
5.A* Search
1. When to stop: Only if we dequeue a goal
2. Admissible (optimistic) heuristic: ¥, 0 < h(r) < A*(
A* Tree Search is optimal if heuristic is admissible.
Proof: Suppose A is optimal, B is suboptimal. B is on fringe.
Clail will be expanded first. Because f(n) = g(n) + h(n) < f(A) < f(B)
3. Consistent heuristic: , B,h(A) — h(B) < cost(A, B)
A* Graph Search is optimalif heuristic is consistent.
6.Semi-Lattice of Heuristics
1.Dominance: define h, = k. if ¥n, ha(n) = h.(n)
2.Heuristics form semi-lattice because: Vh(n) = maz(ha(n), hy(n)) € H
3.Bottom of lattice is zero-heuristic. Top of lattice is exact-heuristic

function TrE
fringe + INs
loop do
if fringe is empty then return failure
"RONT(fringe)
[node]) then return node

EARCH(problem, fringe) return a solution, or failure
SRT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

node « ¥
if GOAL-TE

t(problem,

XPAND(STATE[node|, problem) do
1(child-node, fringe)

for child-node in

function A*-GRAPH-SEARCH(problem, frontier) return a solution or failure

ed « an empty dict mapping nodes to the cost (o cach one
frontier¢— INSERT((MAKE-NODE(INITIAL-STATE{problem}).0), frontier)
while not IS-EMPTY (frontier) do

node, node.CostToNode «+ POP(frontier)
if problem.1S-GOAL(node.STATE) then return node
end if

if node. STATE is not in reached or reached[node. STATE] > node. CostToNode then
reached[node.STATE] = node. CostToNode
for each child-node in EXPAND(problem, node) do
frontier + INSERT((child-node, child-node.COST + CostToNode), frontier)
end for
end if
end while

return failure

Lec4-5: CSP Problems

1. Definition of CSP Problems: (A special subset of search problems)

1. State: Varibles {Xi}, with values from domain D

2. Goal Test: set of constraints specifying allowable combinations of values
2. Example of CSP Problems:
1. N-Queens Wi ok, (X X)) # (1,1),0 -
Formulation 1: Variables: Xij, Domains: {0, 1}, Constraint:
Formulation 2: Variables Qk, Domains: {1, ..., N}, Constraints:
2. Cryptarithmetic ¥(3, 4), non-threatening(Qi, Q)
3. Constraint Graph:

1. Circle nodes = Variables; Rectangular nodes = Constraints.

2. If there is a relation between some variables,

They are connected to a constraint node.

4. Simple Backtracking Search

1. One variable at a time

2. Check constraints as you go. (Only consider constraints not conflicting to
previous assignments)
5. Simple Backtracking Algorithm = DFS + variable-ordering + fail-on-violation

and ¥,

g

X;=N

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING (assignment, csp) returns soln/failure

if assignment is complete then return assignment
P-UNASSIGNED-VARIABLE(VARIABLES|csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if valuc is consistent with assignment given CONSTRAINTS[csp] then

add {var = valuc} to assignment

RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment

var« Sk

result «

return failure

6. Filtering & Arc Consistency

1. Definition: Arc X->Y is consistent if vz X, 5y e ¥

that could be assigned. (Basically X is enforcing constraints on Y)

2. Filtering: Forward Checking: Enforcing consistency of arcs pointing to each
new assignment

3. Filtering: Constraint Propagation: If X loses a Value, neighbors of X need to
be rechecked.

4. Usage: run arc consistency as a preprocessor or after each assignment

5. Algorithm with Runtime O(nA2d"3)

4. Genetic Algorithms

[24748552 [32752411 [32748552]
[32752411 [2a7a8552 [2a752412 [24752411
[24415124 }QJ 32752411 [32752124] 32Bb2124
[32543213] 11 14% ~[22415124 [24415801][244154107

Fitness Selection ~ Pairs Cross-Over

Lec6: Game Trees (MiniMax)

1. Zero-Sum Games V.S. General Games: Opposite utilities v.s. Independent utilities
1. Examples of Zero-Sum Games: Tic-tac-toe, chess, checkers, ...
2. Value of State: Best achievable outcome (utility) from that state.
1. For MAX players mai ycchidren(s) V ()
For MIN players, min...
3. Search Strategy: Minimax

def value(state):
if the i

if the MAX: return
if the next agent is MIN: return min-value(state)

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X1. Xa, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(X, X;) — REMOVE-FIRST(queuc)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X in NEIGHBORS[X/] do
add (Xp.

X;) to queue

function RENOVE-INCONSISTENT-VALUES(X;, X,) returns true iff succeeds
removed — false
for each r in DOMAIN[Y] do
if no value y in DOMAIN[Y,] allows (z,3) to satisfy the constraint X, — X
then delete « from DOMAIN[X}]; removed — true
return removed

7. Advanced Definition: K-Consistency
1. K-Consistency: For each k nodes,
Any consistent assignment to k-1 nodes can be extended to kth node.
2. Strong K-Consistency: also k-1, k-2, ..., 1-Consistent;
Can be solved immediately without searching / backtracking (m
3. Problems of Arc-consistency: only considers 2-consistency B h c
4. Example of being NOT 3-consistent:

8. Advanced Arc-Consistency: Ordering
1. Variable Ordering: MRV (Minimum Remaining Value):
Choosethe variable with fewest legal left values in domain
2. Value Ordering: LCV (Least Constraining Value):
Choose the value that rules out fewest values in remaining variables.
(May require re-running filtering.)

9. Advanced Arc-Consistency: Observing Problem Structure
1. Suppose graph of n variables can be broken into subproblems with ¢
variables: Can solve in O(n/c * dc)

2. Suppose graph is a tree: Can solve in O(nd”2). Method as follows
1. Remove backward: For i = n : 2, apply Removelnconsistent(Parent(Xi),Xi)
2. Assign forward: For i = 1: n, assign Xi consistently with Parent(Xi)
3. *Remark: After backward pass, all root-to-leaf are consistent.

Forward assignment will not backtrack.

g GOV

10. Advanced Arc-Consistency: Improving Problem Structure
1. Idea: Initiate a variable and prune its neighbors' domains.
2. Method: instantiate a set of vars
such that remaining constraintgraph is a tree (cutset conditioning)
3. Runtime: O(d”c * (n-c)d"2) to solve CSP.

s at
— l © \ o
° o“:a © oé@
e L

@

@/@,

]
11. Iterative Methods:
1. Local Search
1. Algorithm: While not solved, randomly select any conflicted variable.
Assign value by min-conflicts heuristic.
2. Performance: can solve n-queens in almost constant time for arbitrary n
with high probability, except a few of them. opU
2. Hill Climbing time
function HILL-CLIMBING(problem) returns a state
current « make-node(problem.initial-state)
loop do "
neighbor « a highest-valued successor of current criical
if neighbor.value < current.value then
return current.state
current «— neighbor
3. Hill Climbing
Remark: Stationary distribution: p(x) propto e*(E(x)/kT)

function SIMULATED- ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
nert, a node
T, a “temperature” controlling prob. of downward steps

current — MAKE-NODE(INITIAL-STATE[problem])
for t— 1 to oo do
— schedule[f]

if 7= 0 then return current

next —a randomly selected successor of current

AE«— VALUE[nexf] — VALUE[current]

if AE > 0 then current — next

else current — next only with probability ¢

A E/T

def max-value(state):
initialize v = -0
for each successor of state:
v = max(v, value(successor))
return v

def min-value(state):
initialize v = +0
for each successor of state:

v=min(y, value(successor))
returnv

4. Minimax properties:
1. Optimal against perfect player. Sub-optimal otherwise.
2. Time: O(b”m), Space: O(bm)

5. Alpha-Beta Pruning
1. Algorithm:

a: MAX's best option on path to root

s best option on path ta root

def max-value(state, a, B):
initialize v = -

def min-value(state, a, 8):
initialize v = +x

for each successor of state: for each successor of state:
v = max{v, value{successer, a, B)) v = min(v, value{successor, a, B))
ifvzBreturnv ifvEareturnv
@ =max(a, v) P = min(B, v)
return v return v
2. Properties:

1. Meaning of Alpha: maximum reward for MAX players, best option so far for
MAX player

2. Meaning of Beta: minimum loss for MIN players, best option so far for MIN
player

3. Have no effect on root value; intermediate values might be wrong.

4. With perfect ordering, time complexity drops to O(b*(m/2))
6. Depth-Limited Minimax: replace terminal utilities with an evaluation function for
non-terminate positions

1. Evaluation Functions: weighted sum of features observed

7. Iterative Deepening: run minimax with depth_limit =1, 2, 3, ... until timeout

Lec7: Game Trees (Expectimax, Utilities)

1. Expetimax Algorithm:

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def max-value(state):
initialize v = -0
for each successor of state:

def exp-value(state):
initialize v =0
for each successor of state:

v = max(y, value(successor))
return v

p = probability(successor)
V4= p * value(successor)
returnv

2. Assumptionsvs Reality:

Rational & Irrational Agents Adversarial Ghost Random Ghost

Minimax Won 5/5 Won 5/5

Pacman Avg. Score: 483 Avg. Score: 493
Expectimax Won 1/5 Won 5/5

Pacman Avg. Score: -303 Avg. Score: 503

3. Axioms of Rationality

Orderability

(A=B)V(B>A)V (A~ B)
Tran:

(A=B)A(B>C)=(A>C)
Continuity

A-B-C=3pp.A; 1-pCl~B
Substitutability

A~B=[pA; 1-p,Cl~[p,Bi1-p,C]
Monotonicity

A>B=>

@294 [p,A; 1-p,B] = [0,A; 1—q,B])

4. MEU Principle
Given any preferences satisfying these constraints,
there exists a real valued function U s.t.:
U(A)>U(B) & A= B
U(lp1: 81 -+ pnSl) = EimiU(S;)
5. Risk-adverse v.s. Risk-prone
1. Def.L=[p,X, 1-p,Y]
2.1fU(L) < U(EMV(L)), risk-adverse
Where U(L) = pU(X) + (1-p)U(Y), U[EMV(L)) = U(pX + (1-p)Y)
i.e. if U is concave, like y=log2x, then risk-adverse
3. Otherwise, risk-prone.
i.e. if U is convex, like y=xA2, then risk-prone

Lec8-9: Markov Decision Process

1. MDP World: Noisy movement, maze-like problem, receives rewards.
1. "Markov": Successor only depends on current state (not the history)
2. MDP World Definition:
1. States, Actions
2. Transition Function T(s, a, s') or Pr(s' | s, a), Reward FunctionR(s, a, s')
3. Start State, (Probably) Terminal State
3. MDP Target: optimal policy pi*: S -> A

4. Discounting: Earlier is Better! No infinity rewards!

sisa
U(fro, -+ riar]) = Sy 1're =< Rusae/(1 =) state
5. MDP Search Trees:
1. Value of State: expected utility startingin s and (s,a)isa
acting optimally. g-state

V*(s) = max, Q*(s,a)
2. Value of Q-State: expected utility starting out
having taken action a from state s and
(thereafter) acting optimally.
Q"(s,a) = X, T(s,a,5") R, a,8" + 9V *(s))]
3. Gptimal Policy: =*(s)
6. Solving MDP Equations: Value Iteration
1. Bellman Equation: V' *(s) = max, 3., T(s, a, s')[R(s,a, s") + 4V (s')]
2. Value Calculation: Vi (s} < max, ¥, T(s,a,s")[R(s,a,s") +~+Vi(s'
3. Policy Extraction: #*(s) = argmax, 3, (s, a, s")[R(s,a, ") + ¥V *(s')]
4. Complexity (of each iteration): O(SA2A)
5. Must converge to optimalvalues. Policy may converge much earlier.
7. Solving MDP Equations: Q-Value Iteration
1. Bellman Equation: Q*(s,a) = 3>, T(s, a,s')[R(s,a,s' + ymasx, Q*(s',a"))]|
2. Policy Extraction: 7°(s) = argmax, Q"(s,a)
8. MDP Policy Evalutaion: EvaluatingV for fixed policy
1. Idea 1: remove the max'es from Bellman, iterating
Vi (8) & 3, T(s,w{s), 8")[R(s, 7(s),5") + aVil(s")]
2. Idea 2:is alinear system. Use a linear system solver.
9. Solving MDP Equations: Policy Iteration
1. Idea: Update Policy & Value meanwhile, much much faster!
2. Algorithm:
= Initialize o (s) = some default action forall s
= for i of policy iteration:
Policy evaluation:
= |nitialize Vu"‘(s) =0foralls
= for k of policy evaluation:
VL) ST s i
o

(sas)isa
transition

o) [R(s,mis),) + 7 V()]

Policy improvement:

+ miga(s) = argmax 3 T(s,a,5) [R(s,a,8) + V7))

Lec 10-11: Reinforcement Learning

1. Intuition: Suppose we know nothing about the world. Don't know T or R.

[Environment

MDP
2. Passive RL I: Model-Based RL
1. Countoutcomess' for each s, a; Record R;
2. Calculate MDP through any iteration
3. Run policy. If not satisfied, add data and goto step 1
3. Passive RL Il: Model-Free RL (Direct Evaluation, Sample-Based Bellman Updates)
1. Intuition: Direct evaluation from samples.
Improve our estimate of V by computing averages of samples.
2. Input: fixed policy pi(s)
3. Act according to pi. Each time we visit a state,
write down what the sum of discounted rewards turned out to be.
4. Average the samples, we get estimate of V(s)

sample; = R(s, W(b)ws/l) + ﬂ’,\f(b/l)

sampley = R(s,m(s), sh) + 7V (sh)

State: s

Reward.r Actions: a

samplen, = R(s,7(s), s),) + YV (sh)

1
Viga(s) " >~ sample;

i
5. Problem: wastes information about state connections.
Each state learned separately. Takes long time.

Input Policy Observed Episodes (Training) Output Values

Episode 1 Episode 2
B, east,C,-1 B, east,C,-1

€, east, D, -1 €, east, D, -1
D, exit, x, +10 D, exit, x, +10

Episode 3 Episode 4

E, north, C, -1 E,north, C, -1
C east, D,-1 Ceast, A,-1
Assume: =1 D,exit, x+10 | | A exit, x-10

4. Passive RL Il: Model-Free RL (Temporal Difference Learning)
1. Intuition: learn from everywhere / every experience.
Recent samples are more important. &, = (1 — @)z,
2t (1-a) ay +(1-0)?
N 1+(1-a)+(1-a)?+...

2+...

2. Update:
Sample of V(s): sample = R(s,7(s),s") +~V7(s)

Update to V(s): V7(s) + (1 — a)V7(s) + (a)sample

Same update: VT(s) ¢ V™ (s) + a(sample — V™(s))

3. Decreasing learning rate (alpha) converges
4. Problem: Can'tdo policy extraction, can't calculate Q(s, a) without T or R
5. Idea: learn Q-values directly! Make action selection model-free too!
5. Passive RL IIl: Model-Free RL (Q-Learning + Time Difference Learning)
1. Intuition: Learn as you go.
2. Update:
1. Receive a sample (s, a, s', r)
2. Let sample = R(s,a,s') + v max. Q(s',a')
3. Incorporate new estimate into a running average:
Q(s,a) + (1 - a)Q(s,a) + a-sample
4. Anether representation: Q(s, a) « Q(s,a) + a - Difference
where diff = sample - orig
3. This is off-policy learning!
6. Active RL: How to act to collect data
1. Exploration schemes: eps-greedy
1. With probability eps, act randomly from all options
2. With probability 1 —eps, act on current policy
2. Exploration functions: use an optimistic utility instead of real utility
1. Def. optimistic utility f(u,n) = u + k/n
suppose u = value estimate, n = visit count
2. Modified Q-Update: Q(s, a) +, R(s,a,s") + ymaxy f(Q(s',a'), N(s',a"))
3. Measuring total mistake cost: sum of difference between expected rewards and
suboptimality rewards.

7. Scaling up RL: Approximate Q Learning

1. State space too large & sparse?
Use linear functions to approximately learn Q(s,a) or V(s)

2. Definition: Q(s,a) = w; fi(s,a) +wafa(s,a)+...

3. Q-learning with linear Q-fuctions:
Transition:= (s, a, r,s')
Difference := |r + ymax, Q(s',a')| — Q(s,a)
Approx. Updateweight: w; « w; + a - Difference - f,(s, a)

